ADVANCED ROBOTICS
 (MACHINE DESIGN)

Duration: 3 hours
Max. Marks: 60
Answer the following questions.
1.a) Incise a short note on the following with neat sketches. i)Rectangular configuration ii) Spherical configuration. 5 M
b) For the following frame, find the values of the missing elements and complete the matrix representation of the frame:

$$
F=\left[\begin{array}{cccc}
? & 0 & ? & 5 \\
0.707 & ? & ? & 3 \\
? & ? & 0 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

c) Draw the approximate workspace for the following robot. Assume the dimensions of the base and other parts of the structure of the robot are as shown.

(OR)
2. a) Illustrate different joints used in robots.
b) A frame F has been moved 10 units along the y -axis and 5 units along the z -axis of the reference frame. Find the new location of the frame.

$$
F=\left[\begin{array}{cccc}
0.527 & -0.574 & 0.628 & 5 \\
0.369 & 0.819 & 0.439 & 3 \\
-0.766 & 0 & 0.643 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

c) A frame B was rotated about the x -axis by 90°, then it was translated about the current a-axis 3 inches before it was rotated about the z-axis 90°. Finally, it was translated about current o-axis 5 inches.
i) Write an equation that describes the motions.
ii) Find the final location of a point $p(1,5,4)^{\mathrm{T}}$ attached to the frame relative to the reference frame.
3. a) The desired final position and orientation of the hand of a Cartesian-RPY robot is given below. Find the necessary RPY angles and displacements.

$$
{ }^{R} T_{P}=\left[\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0.354 & -0.674 & 0.649 & 4.33 \\
0.505 & 0.722 & 0.475 & 2.50 \\
-0.788 & 0.160 & 0.595 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

b) Calculate the inverse of the following transformation matrices:

$$
T_{1}=\left[\begin{array}{cccc}
0.527 & -0.574 & 0.628 & 2 \\
0.369 & 0.819 & 0.439 & 5 \\
-0.766 & 0 & 0.643 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } T_{2}=\left[\begin{array}{cccc}
0.92 & 0 & 0.39 & 5 \\
0 & 1 & 0 & 6 \\
-0.39 & 0 & 0.92 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

4. a) A 3-DOF robot arm has been designed for applying paint on flat walls, as shown. (i) Assign the coordinate frames as necessary based on the D-H representation. (ii) Fill out the parameters table. (iii) Find the ${ }^{\mathrm{U}} \mathrm{T}_{\mathrm{H}}$ matrix.

10 M

b) As a result of applying a set of differential motions to frame T shown, it has changed an amount dT as shown. Find the magnitude of the differential changes made (dx; $\mathrm{dy} ; \mathrm{dz} ; \delta \mathrm{x} ; \delta \mathrm{y} ; \delta \mathrm{z}$) and the differential operator with respect to frame T .

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 0 & 1 & 3 \\
0 & -1 & 0 & 8 \\
0 & 0 & 0 & 1
\end{array}\right] \quad d T=\left[\begin{array}{cccc}
0 & -0.1 & -0.1 & 0.6 \\
0.1 & 0 & 0 & 0.5 \\
-0.1 & 0 & 0 & -0.5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

5. a) Derive the equations of motion for the 2-DOF system shown in Figure.

b) It is desired to have the first joint of a 6-axis robot go from initial angle of 30° to a final angle of 75^{0} in 5 seconds. Using a third-order polynomial, calculate the joint angle at $1,2,3$, and 4 seconds.
(OR)
6. a) The third joint of a 5 DOF manipulator is at the start of the cycle. It is to be moved by an angle of 90° in 5 seconds. Find the cubic trajectory for the specified motion. Plot position, velocity and acceleration profiles for the motion assuming it is starting from rest and comes to rest at the destination.
b) Joint 1 of a 6-axis robot is to go from an initial angle of $\theta_{i}=$ 30° to the final angle of $\theta_{\mathrm{f}}=120^{\circ}$ in 4 seconds with a cruising velocity of $\omega_{1}=30^{\circ} / \mathrm{sec}$. Find the necessary blending time for a trajectory with linear segments and parabolic blends and plot the joint positions, velocities, and accelerations.
7.a) Simplify the block diagram of the Figure shown below. 7 M

b) Brief out about Electric Motors, Servo motors and stepped motors.

8 M
(OR)
8. a) Differentiate hydraulic, electrical and pneumatic actuating systems in robots.

7 M
b) Brief out Sensor characteristics in view of robotics. 8 M

